
とりあえず．

 $ mojo generate lite-app

css や js など静的ファイルは public フォルダに置く．
プログラムでファイルを作成してダウンロードできるようにするには
そのファイルも public 以下に生成させると， hoge でアクセスできる．
外部テンプレートフォルダは templates で，hoge.html.ep などを置く．

■ クライアントとして

 $ mojo get https://mojolicious.org
 $./myapp.pl get /foo
 $./myapp.pl get -M PUT -c '{"message":"Hello Mojo!"}' /hoge

 サンプル

■ モデル

自動で生成されるのは，コントローラとビューの部分．
ある程度規模が大きいものは，シングルファイルでなく，モジュールを用意する．
つまり，コントローラ部分に埋め込まず，モデルを別ファイルに自前で書く．

 # mkdir -p lib/MyApp/Model
 # touch lib/MyApp/Model/Greet.pm
 # chmod 644 lib/MyApp/Model/Greet.pm

lib/MyApp/Model/Greet.pm

 package MyApp::Model::Greet;

 use strict;
 use warnings;
 use experimental 'signatures';

 sub new ($class) {bless {}, $class}

 sub greeting ($self, $name) {
 return "Hello $name";
 }

 1;

myapp.pl

 #!/usr/bin/env perl
 use Mojolicious::Lite -signatures;

 use lib 'lib';
 use MyApp::Model::Greet;

 helper greet => sub {state $greet = MyApp::Model::Greet->new};

 get '/hello/:who' => sub ($c) {
 my $w = $c->stash('who');
 my $msg = $c->greet->greeting($w);
 $c->render(text => $msg);
 };

 app->start;

1

Try !

 $./myapp.pl get /hello/taro
 Hello taro

■ フォームで JSON をやり取りするサンプル

myapp.pl

 #!/usr/bin/env perl
 use Mojolicious::Lite -signatures;

 get '/' => sub ($c) {
 $c->render(template => 'index');
 };

 get '/form' => sub ($c) {
 $c->render(template => 'form');
 };

 put '/endpoint' => sub ($c) {
 my $hash = $c->req->json;
 $c->render(json => {n => ++$hash->{num}});
 };

 app->start;
 __DATA__

 @@ index.html.ep
 % layout 'default';
 % title 'Welcome';
 <h1>Welcome to the Mojolicious real-time web framework!</h1>

 @@ layouts/default.html.ep
 <!DOCTYPE html>
 <html>
 <head><title><%= title %></title></head>
 <body><%= content %></body>
 </html>

templates/form.html.ep

 % layout 'default';
 % title 'Form Test';

 Input number.
 <form id="form_x">
 <label for="int">N:</label>
 <input type="text" id="int" name="int" required>
 <button type="submit">Send</button>
 </form>

 <div id="result"></div>

 <script>
 document.getElementById("form_x").addEventListener("submit", function(event) {
 event.preventDefault();
 const i = document.getElementById("int").value;
 fetch("/post", {
 method: "POST",
 headers: {
 "Content-Type": "application/json",
 },
 body: JSON.stringify({num: i}),
 })
 .then(response => response.json())
 .then(data => {
 document.getElementById("result").innerHTML = "next number: " + data.n;
 })
 .catch(error => {
 document.getElementById("result").innerHTML = "error: " + error;
 });
 });

2

 </script>

 サーバ デプロイ

■ Hypnotoad の FeeBSD 用 rc

/usr/local/etc/rc.d/mojolicious

 #!/bin/sh
 #
 # PROVIDE: mojolicious
 # REQUIRE: DAEMON
 # KEYWORD: shutdown

 . /etc/rc.subr

 name=mojolicious
 rcvar=mojolicious_enable

 command="/usr/local/bin/hypnotoad"
 myprg="/home/mojolicious/myapp.pl"

 start_cmd="${command} ${myprg}"
 stop_cmd="${command} -s ${myprg}"

 load_rc_config ${name}

 run_rc_command "$1"

■ Nginx リバースプロキシの最小限セットアップ

nginx.conf

 upstream myapp {
 server 127.0.0.1:8080;
 }
 server {
 listen 80;
 server_name localhost;
 location / {
 proxy_pass http://myapp;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
 }

3

	
	
	 クライアントとして

	 サンプル
	 モデル
	 フォームで JSON をやり取りするサンプル

	 サーバ デプロイ
	 Hypnotoad の FeeBSD用rc
	 Nginx リバースプロキシの最小限セットアップ

